A mixture model for dimension reduction
نویسندگان
چکیده
منابع مشابه
Sufficient dimension reduction via bayesian mixture modeling.
Dimension reduction is central to an analysis of data with many predictors. Sufficient dimension reduction aims to identify the smallest possible number of linear combinations of the predictors, called the sufficient predictors, that retain all of the information in the predictors about the response distribution. In this article, we propose a Bayesian solution for sufficient dimension reduction...
متن کاملTwo-way Gaussian mixture models for high dimensional classification
Mixture discriminant analysis (MDA) has gained applications in a wide range of engineering and scientific fields. In this paper, under the paradigm of MDA, we propose a two-way Gaussian mixture model for classifying high dimensional data. This model regularizes the mixture component means by dividing variables into groups and then constraining the parameters for the variables in the same group ...
متن کاملTwo-way Poisson mixture models for simultaneous document classification and word clustering
An approach to simultaneous document classification and word clustering is developed using a two-way mixture model of Poisson distributions. Each document is represented by a vector with each dimension specifying the number of occurrences of a particular word in the document in question. As a collection of documents across several classes usually makes use of a large number of words, the docume...
متن کاملDegenerate Expectation-Maximization Algorithm for Local Dimension Reduction
Dimension reduction techniques based on principal component analysis (PCA) and factor analysis are commonly used in statistical data analysis. The effectiveness of these methods is limited by their global nature. Recent efforts have focused on relaxing global restrictions in order to identify subsets of data that are concentrated on lower dimensional subspaces. In this paper, we propose an adap...
متن کاملA model-based dimension reduction approach to classification of gene expression data
The monitoring of the expression profiles of thousands of genes have proved to be particularly promising for biological classification, particularly for cancer diagnosis. However, microarray data present major challenges due to the complex, multiclass nature and the overwhelming number of variables characterizing gene expression profiles. We introduce a methodology that combine dimension reduct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017